Blog Glossary

What is Out-Of-Sample Evaluation?

Out-Of-Sample Evaluation means to withhold some of the sample data from the model identification and estimation process, then use the model to make predictions for the hold-out data in order to see how accurate they are and to determine whether the statistics of their errors are similar to those that the model made within the …

Continue Reading
Blog Glossary

What is Outlier?

Outlier is an observation point that is distant from other observations. An outlier may be due to variability in the measurement or it may indicate an experimental error, the latter are sometimes excluded from the data set. Outliers can occur by chance in any distribution, but they often indicate either measurement error or that the …

Continue Reading
Blog Glossary

What is Nearest Neighbor Algorithm?

Nearest Neighbor Algorithm was one of the first algorithms used to determine a solution to the traveling salesman problem. In it, the salesman starts in a random city and repeatedly visits the nearest city until all have been visited. It quickly yields a short tour, but usually not the optimal one. The nearest neighbor algorithm …

Continue Reading
Blog Glossary

What is Nearest Neighbor Algorithm?

Nearest Neighbor Algorithm was one of the first algorithms used to determine a solution to the traveling salesman problem. In it, the salesman starts in a random city and repeatedly visits the nearest city until all have been visited. It quickly yields a short tour, but usually not the optimal one. The nearest neighbor algorithm …

Continue Reading
Blog Glossary

What is Multiple Regression?

Multiple Regression is an extension of simple linear regression. It is used when we want to predict the value of a variable based on the value of two or more other variables. The variable we want to predict is called the dependent variable (or sometimes, the outcome, target or criterion variable). The independent variables can …

Continue Reading
Blog Glossary

What is Multinomial Logistic Regression?

Multinomial Logistic Regression is the linear regression analysis to conduct when the dependent variable is nominal with more than two levels. Thus it is an extension of logistic regression, which analyzes dichotomous (binary) dependents. Since the output of the analysis is somewhat different to the logistic regression’s output, multinomial regression is sometimes used instead. Like …

Continue Reading
Blog Glossary

What is Multinomial Logistic Regression?

Multinomial Logistic Regression is the linear regression analysis to conduct when the dependent variable is nominal with more than two levels. Thus it is an extension of logistic regression, which analyzes dichotomous (binary) dependents. Since the output of the analysis is somewhat different to the logistic regression’s output, multinomial regression is sometimes used instead. Like …

Continue Reading
Blog Glossary

What is Model Fitting ?

Model Fitting is running an algorithm to learn the relationship between predictors and outcome so that you can predict the future values of the outcome. It proceeds in three steps: First, you need a function that takes in a set of parameters and returns a predicted data set. Second you need an ‘error function’ that …

Continue Reading
Blog Glossary

What is Markov Model?

Markov Model in probability theory is a stochastic model used to model randomly changing systems where it is assumed that future states depend only on the current state not on the events that occurred before it (defined as the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be …

Continue Reading
Blog Glossary

What is Manhattan Distance?

Manhattan Distance is the distance between two points measured along axes at right angles. The name hints to the grid layout of the streets of Manhattan, which causes the shortest path a car could take between two points in the city. The limitation of the Manhattan Distance heuristic is that it considers each tile independently, …

Continue Reading